Harris, Thurl E

Thurl Harris

Thurl E Harris

Primary Appointment

Associate Professor and Director of Graduate Studies, Pharmacology


  • PhD, Cell & Molecular Biology, Baylor College of Medicine

Contact Information

PO Box 800735
1340 Jefferson Park Ave., Pinn Hall, Room 5221B
Charlottesville, VA 22908
Telephone: 434-924-1584
Fax: 434-982-3878
Email: teh3c@virginia.edu
Website: https://pharm.virginia.edu/harris/sample-page/

Research Interests

Molecular mechanisms controlling insulin signaling and fat synthesis.

Research Description

As Paleolithic hunter gatherers, the human diet was relatively low in fats and simple carbohydrates. Technological advances, beginning with the agricultural revolution 12,000 years ago and culminating with the mechanization of food production in the last century, have provided a significant portion of the world?s population with access to inexpensive, energy-dense food. In the modern age the ready availability of carbohydrates and fats, combined with a large reduction in physical labor, has led to a predictable rise in obesity. The Center for Disease Control estimates currently 34% of the U.S. population is characterized as overweight (B.M.I. of 25-30), and another 41% are obese (B.M.I.>30), giving an astonishing 3 out 4 Americans defined as overweight or obese. As an underlying risk factor for type II diabetes and cardiovascular disease, understanding how obesity promotes the development of these diseases is of extreme importance for worldwide health. Food intake triggers the release of insulin, an anabolic hormone that promotes nutrient storage and protein synthesis. Our laboratory is interested in the mechanisms underlying the storage and release of carbohydrates and fats as triacylglycerol (TAG) in adipose tissue, and the dysregulation of insulin signaling that occurs during obesity. The mTOR Signaling Pathway - A key player in the insulin signaling cascade is the mammalian target of rapamycin (mTOR), a highly conserved Ser-Thr phosphatidylinositol 3-kinase-related protein kinase that integrates cellular energy status and growth factors to regulate cellular growth, survival, and metabolism. mTOR forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) each of which catalyzes the phosphorylation of different substrates in response to insulin. Under conditions of caloric excess, such as that seen during diet-induced obesity, both arms of the mTOR pathway can be affected. We study the molecular mechanisms of how insulin signaling activates the two different mTOR complexes, the targets of mTORC1 and 2, and the functional consequences of obesity on mTOR activity. Triacylglycerol Storage in Adipocytes and Inflammation - Another important research interest in the laboratory are the enzymatic pathways by which adipocytes store fatty acids as TAG and release fatty acids for energy between meals. It is clear that obesity results in dysregulation of the storage and breakdown of TAG in adipose tissue and genetic studies in mice have suggested that improper regulation of this process can cause peripheral insulin resistance and glucose intolerance- both hallmarks of the pre-diabetes. We study the molecular alterations in TAG homeostasis in adipocytes and how this can impact the physiology of whole body metabolism.

Selected Publications